Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhe An^{a,b} and Rong-Shun Wang^a*

^aInstitute of Functional Materials Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China, and ^bSchool of Pharmaceutical Science, Harbin Medical University, Harbin 150086, People's Republic of China

Correspondence e-mail: wangrs@nenu.edu.cn

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(C-C) = 0.002 \text{ Å}$ H-atom completeness 93% Disorder in solvent or counterion R factor = 0.026 wR factor = 0.071 Data-to-parameter ratio = 16.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[bis[bis(1*H*-benzimidazole- κN^3)zinc(II)]- μ_4 -benzene-1,2,4,5-tetracarboxylato] monohydrate]

In the title compound, $\{[Zn_2(C_{10}H_2O_8)(C_7H_6N_2)_4]\cdot H_2O\}_n$, the Zn^{II} atom has a distorted tetrahedral geometry, defined by two N atoms from two benzimidazole ligands and two O atoms from two benzene-1,2,4,5-tetracarboxylate (btc) tetra-anions. The complete btc anion is generated by inversion symmetry. The polymeric structure exhibits one-dimensional double chains running along the [100] direction, which further extend into a three-dimensional supramolecular network by way of π - π stacking involving the benzimidazole rings. A non-coordinated water molecule completes the structure.

Received 21 August 2006 Accepted 31 August 2006

Comment

The rational design and synthesis of polymeric complexes is of current interest in the field of supramolecular chemistry and crystal engineering. Benzimidazole ($C_7H_6N_2$; bim) is an attractive choice for a multifunctional linking group and has been investigated in the construction of many metal-organic frameworks (Wang *et al.*, 2006; Yutaka *et al.*, 2004; Rau *et al.*, 2000; Liu *et al.*, 2004). We present here the crystal structure of the title compound, (I), which is a new example in this family with a one-dimensional polymeric structure.

As shown in Fig. 1, the asymmetric unit of (I) contains one Zn^{II} atom, two benzimidazole ligands, one-half of a benzene-1,2,4,5-tetracarboxylate ($C_{10}H_2O_8^{4-}$; btc) tetra-anionic ligand, and one half-occupancy water molecule. The Zn^{II} atom is coordinated by two O atoms from two btc ligands and two N atoms from two bim ligands, resulting in a distorted tetrahedral geometry (Table 1). Each btc ligand is coordinated to

© 2006 International Union of Crystallography All rights reserved

metal-organic papers

Figure 1

Asymmetric unit of (I), extended to show the Zn coordination, showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms. [Symmetry code: (A) 1 - x, 1 - y, z.]

Figure 2

A view of the one-dimensional double chain running along the [100] direction in (I). H atoms and the water O atom have been omitted.

four Zn^{II} atoms and each bim ligand is coordinated to one Zn atom. The dihedral angle between the planes of the N1- and N3-bim ligands is 49.24 (6)°. The lengths of the C–O bonds in the btc ligand suggest localization of the bonding.

Adjacent $[Zn(bim)_2]$ units are linked by the btc ligands to form one-dimensional double chains running along the [100] direction as a molecular ladder (Fig. 2). The two benzimidazole ligands coordinated to one Zn^{II} atom are directed away from the double chains. This orientation plays an important role in defining a three-dimensional network through $\pi - \pi$ stacking interactions between nearby bim ligands; firstly, the adjacent double chains are extended into a layer parallel to the (001) plane (Fig. 3), and then a three-dimensional supramolecular network is formed. The face-to-face distances between neighboring parallel benzimidazole planes are 3.364 (2) and 3.377 (2) Å.

Experimental

Compound (I) was prepared by hydrothermal methods. A mixture of $Zn(NO_3)_2$ ·6H₂O (0.5 mmol), H₄btc (0.6 mmol), benzimidazole (1.0 mmol) and water (12 ml) was stirred for 30 min in air. The mixture was then transferred to a 23 ml Teflon reactor and kept at

Packing diagram of the three-dimensional supramolecular network in (I). H atoms and the water O atom have been omitted.

423 K for 48 h under autogenous pressure. After cooling, colorless single crystals of (I) suitable for X-ray analysis were obtained from the reaction mixture.

Z = 4

 $D_r = 1.618 \text{ Mg m}^{-3}$

Mo Ka radiation

 $\mu = 1.41 \text{ mm}^{-1}$

T = 295 (2) K

 $R_{\rm int}=0.022$

 $\theta_{\rm max} = 28.3^{\circ}$

Block, colorless

 $0.35 \times 0.27 \times 0.22 \text{ mm}$

10890 measured reflections

4355 independent reflections

3911 reflections with $I > 2\sigma(I)$

 $(0.0396P)^2$

Crystal data

 $[Zn_2(C_{10}H_2O_8)(C_7H_6N_2)_4]\cdot H_2O$ $M_r = 871.42$ Monoclinic, C2/c a = 21.848 (8) Å b = 11.057 (5) Å c = 14.806 (6) Å $\beta = 90.288 (15)^{\circ}$ V = 3577 (2) Å³

Data collection

Bruker SMART CCD diffractometer ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.639, T_{\max} = 0.732$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0396P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.026$	+ 2.1651P]
$wR(F^2) = 0.071$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.039$
4355 reflections	$\Delta \rho_{\rm max} = 0.34 \ {\rm e} \ {\rm \AA}^{-3}$
262 parameters	$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected bond lengths (Å).

1 0325 (11)	C15_02	1 2356 (18)
1.9525(11) 1.9545(11)	C15 = 02 C15 = 01	1.2550(18) 1.2648(19)
1.9842 (15)	C18-O4	1.2358 (18)
2.0049 (14)	C18-O3	1.2726 (18)
	1.9325 (11) 1.9545 (11) 1.9842 (15) 2.0049 (14)	1.9325 (11) C15-O2 1.9545 (11) C15-O1 1.9842 (15) C18-O4 2.0049 (14) C18-O3

Symmetry code: (i) $-x + 1, y, -z + \frac{1}{2}$.

The non-coordinated water molecule (O1W) was modeled with 50% fractional site occupancy. Its attached H atoms could not be located in the present study. The other H atoms were placed in calculated positions with N-H = 0.86 Å and C-H = 0.93 Å and treated as riding atoms with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm carrier})$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT-Plus* (Bruker, 1998); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXL97*.

The authors thank Professor Z.-M. Su for refining the structure.

References

- Bruker (1998). SMART, SAINT-Plus and SHELXTL (Version 5.16). Bruker AXS Inc., Madison, Wisconsin, USA.
- Liu, B.-X., Su, J.-R. & Xu, D.-J. (2004). Acta Cryst. C60, m183-m185.
- Rau, S., Büttner, T., Temme, C., Ruben, M., Grlis, H., Walther, D., Duati, M., Fanni, S. & Vos, J. G. (2000). *Inorg. Chem* **39**, 1621–1624.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Wang, S.-W., Ge, H.-Y., Yang, J.-H., Li, B.-L. & Zhang, Y. (2006). Acta Cryst. E62, m1646-m1648.
- Yutaka, T., Obara, S., Ogawa, S., Nozaki, K., Ikeda, N., Ohno, T., Ishii, Y., Sakai, K. & Haga, M. (2004). *Inorg. Chem.* 43, 4737–4746.